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NOTE

An Approximate Time Evolution Operator to Generate the
Verlet Algorithm

Approaches to the integration of the classical equations of
motion based upon approximations to the classical time devel-
opment operator have been applied in astrophysics, lattice
gauge theory, and chemical dynamics [1, 3, 4, 6]. These meth-
ods lead to strategies for numerical integration of the classical
equations of motion to any desired accuracy as well as assuring
that the integrations preserve reversibility. Recently, Sexton
and Weingaren [3] and Tuckerman, Berne, and Martyna [4]
have shown how such methods can be applied to systems with
disparate time scales in the context of the hybrid Monte Carlo
approach to field theory and molecular simulations, respec-
tively. Sexton and Weingarten are also able to present explicit
error expressions for any symmetric decomposition of the time
development operator.

Strangely though, one of the most fundamental integrators
used in MD simulations, the Verlet algorithm {2], apparently
does not fit into this framework as pointed out by Tuckerman,
Berne, and Martyna. Since the Verlet algorithm is a widely
used integration scheme for MD simulations, it is interesting
to ask how the method may be derived within a sympletic
approach to MD. The method makes use of the Poisson bracket
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which for a function f(£) = f[p(r), g(1)] allows the equations
of motion to be written
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The evolution of a variable is then given by

f(t) = explt L{H)] £(0). (3)

The observation is then made that an approximation to the expo-
nential

explAt L(H)] =~ exp[Ar L{k,)] X ... X exp[At L(h)]
X exp[At L(h))]
X exp[At L{hy)]
X ... X explar Lk, )]

(4)

with
L(H) = L(h) +2 3 L(h) )

has certain advantages when formulating an integration scheme
[1, 3, 4, 6]. The symmetry of the factorization assures for any
decomposition of L(H) that the resulting time evolution is
reversible. Furthermore, the scheme is measure preserving and
the error to any order is easily obtained from the Baker—Haus-
dorff formula [3, 6].

Now let us turn to the Verlet algorithm by considering an
asymmetric factorization of the evolution operator

explAr L(H)] = explAt L(h)] exp{Ar L)) (6)
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Two things can be said about the approximation:

1. the Baker—Hausdorff formula implies an error of
O[(Ar)?] since

[Lh), L{R)I 20, (8)
2. time reversibility is apparently not satisfied since

exp[—Ar L{hy)]
exp[— At L{h))] exp[&t L{h,)] exp[Ar Lik)] # 1. 9

A position update from Eq. 6 is given by

g™ = exp[At L{h,)] exp[At L(h)]g’
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and, similarly, the momenta are updated as

p**' = explAr L(hy)) exp[At L{h))]p’
i A al(g" )_
ag'

(11)

Superscripts are being used to denote time increments. Note
that the position update is correct only through G[(Af)] and,
likewise, the momentum update is the Taylor series expansion
of p™™' truncated after the first order in Ar these errors in
the positions and momenta are the errors anticipated from the
Baker—Hausdorff formula. An equivalent truncated expansion
for the momenta can be obtained from Eq. (10) for the updated
positions as
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and the forward arrow has been introduced to designate that
the momentum update is for positive time propagation. Now
an expression for the position updates in terms of the updated
momenta equation {12) may be written as
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which is the standard form of the Verlet algorithm. As is well
known, the Verlet integration scheme as wrilten is time revers-
ible Also, the integration is accurate to G[(An)?*] [5] since if
g', g"' are known exactly, then expanding ¢! in a Taylor
series results in
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which is correct to fourth order. To start the position integra-
tions, it is required to specify ¢', ¢'”' exactly. The updated
coordinate ¢! is then predicted correctly up to G[(Ar)?*] due
to the use of the updated momenta and a consequent fortuitous
cancellation of the error.?

Reversihility in the Verlet algorithm arises from asymmetry
in the momenta updates depending upon whether the coordi-

! In its simplest formulation, the Verlet algorithm is manifestly time symmet-
ric, Newton's equation is approximated by a finite difference equation F =
mij = (m/Af?) A, A,q. For a symmetric time difference operator, reversibility
is assured.

?The error terms from the Baker—Hausdorff formula arising from use of
the approximate time evolution operator may be compared to those in the
Taylor sertes expansion with the replacement d/dt — (p/m}{a/dq) — (BU(g)/
aq)(8/8p).
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nates are propagated forward or backward in time. A position
update for negative time is given by

g~ = exp{—Azr L(h;)] exp[—At L(h)]g’
Y (18] (12
T b m aq'
and the backward momenta are updated as
p'™ = expl—Ar L(h:)] expl—At L(h)lp’
2U(q’) (16)
pitAI——
dg'

As for forward time propagation, the backward momenta may
be expressed in terms of the position updates:
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and the backward arrow has been introduced to designate that
the momentum update is for negative time propagation. For
positive time propagation the approximate time development
operator requires use of the backward difference operator in
defining the momenta, whereas for negative time propagation
the momenta are defined in terms of the forward finite difference
operator. The differences in the updating scheme for forward
and backward time propagation is shown in Fig. 1. This asym-
metry in time gives rise to the reversibility of the Verlet algo-
rithm,
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which retraces the same trajectory generated by Eq. (13). Equiv-
alently, the time reversibility of the algorithm can be seen
directly from

exp[—Az L(h)] exp[—A1 L{h,)] exp[At L(h;)]
exp[At L(h)lq' = ¢' (19

if the appropriate forward and backward momenta are used for
positive or negative time increments:

exp[—At L(hy)] exp[—Ar L(h)1g™
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F1G. 1. Updating schemes for the Verlet algorithm for forward and back-
ward time propagation. The dashed line shows the two coordinates necessary
for a momentum vpdate. The solid imes show the coordinate and momentom
necessary for a position update. The error predicting the pith momenta cance]s
the error in predicting the ¢"*'th positions to fourth order in the timestep.

The momentum at any given time point is ambiguous since
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and, hence, the energy estimation at any point
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is dependent, through the kinetic energy term, upon whether
time propagation is forward or backward in time. In actual
practice, the energy in the Verlet algonthm is estimated by
the expression
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where the use of a symmetric derivative preserves the time
reversal properties if the positions are calculated with Eq. (13).
With this choice, the Verlet algorithm integrates positions to
an accuracy of G{{A#)*], whereas the kinetic energy estimator
in Eq. (23) is only accurate to G[(Ar)?]. In the context of the
approximate time development operator used to generate the
coordinate updates, the energy estimator equation (23) is ob-
tained by defining

Po=Hpt B (24)
to avoid ambiguities in the energy estimation.

To summarize, some well-known properties of the Verlet
algorithm have been re-derived within the context of a sympletic
approach. Although the approximate time development operator
used to generate the Verlet integration scheme is not time
reversible and introduces an error of O[(Ar)?], the use of mo-
mentum updates (as opposed to the exact momenta) in generat-
ing trajectories results in a time reversible algorithm with an
error of O[(Af)*]. Since the exact momenta are never known,
one must resort to the use of the updated momenta in actual
calculations (in the Verlet scheme this is implicit). Therefore, as
has been shown, an algorithm can display significantly different
characteristics in its actual implementation than predicted a
priori by its operator formulation.
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